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Tutorial Goals

1. Motivate usefulness of proofs in CPS

2. Enable participants to practice the technique “in the privacy of 
one's own mind” (Barendregt)
● doing a sequence of exercises
● guided by the Agda proof assistant



  

Why Write Proofs in CPS

● Allows to use classical-logic-like proofs inside intuitionistic 
systems (ex. Coq, Agda proof assistants)

– This may actually allow you to prove statements you do not 
know how to prove directly

● Does not lose constructivity

– Proofs are still pure functional programs 



  

Is Classical Logic Constructive?

Not really!

As soon as you go out of pure logic by adding axioms,
like the Induction Axiom (Peano Arithmetic),

or Choice Axiom (Classical Analysis),
problems appear

Ex. you can refute Church's Thesis



  

The Purely Existential Formulas

● Double negation 
translation translates all 
classical formulas/proofs to 
intuitionistic ones

● But not all formulas are left 
unchanged by the translation

● Formulas that do not contain 
 and  are ⊃ ∀ resistant to the 

double negation translation, 
for them we can derive

● These are called the purely 
existential or ∑-0-1 formulas

A⊥ :=(A⊥⊃⊥)⊃⊥

(A∧B)⊥ :=A⊥
∧B⊥

(A∨B)⊥ :=A⊥
∨B⊥

(A⊃B)⊥ :=A⊥
⊃B⊥

(∀ x A )⊥:=∀ x A⊥

(∃x A )⊥:=∃ x A⊥

A⊥⊃A



  

CPS–, A– and Double Negation Translation

● The double negation 
translation showed is the 
same as the CPS 
translation of types, 
mapping a type to its 
continuation monad

● The meta-proof technique 
for

is known as A–translation 
but the same as defining run 
for a continuation monad

Running programs in CPS is the same as combining double 
negation– and A–translation

A⊥⊃A



  

When to Use Proofs in CPS

When your goal is a data type

i.e.

Not a function or ∏-type

For example,

an inductive type in Coq/Agda 



  

Proofs in CPS

Case study:

Gödel's System T extended with sums and delimited 
control



  

Why System T

● The pure fragment of Functional Programming

– Extends simply typed lambda calculus with datatypes and 
recursion

● The target language for extracting programs in Foundations of 
Mathematics

– Higher-type primitive recursion
● Ex. allowing to define the diagonal Ackermann function



  

Why System T

● Elegant proof of Normalization of simply typed lambda 
calculus

– known as Normalization by Evaluation (NBE) [Berger-
Schwichtenberg]

● But extending the proof to sums, recursion, and delimited 
control does not seem direct

– does exist as a program: Type Directed Partial Evaluation 
(TDPE) [Danvy]



  

NBE for Λ→ (Simply Typed Lambda Calculus)

data Formula : Set where
  $_  : Proposition → Formula
  _ _⊃  : Formula → Formula → Formula

data _ _⊢  : List Formula → Formula → Set where
  hyp : ∀ {  AΓ } → (A ∷ Γ) ⊢ A
  wkn : ∀ {  A BΓ } →  Γ ⊢ A → (B ∷ Γ) ⊢ A
  e⊃  : ∀ {  A BΓ } →  Γ ⊢ (A ⊃ B) →  Γ ⊢ A →  Γ ⊢ B
  i⊃  : ∀ {  A BΓ } → (A ∷ Γ) ⊢ B →  Γ ⊢ (A ⊃ B)

Example. x. y. x is represented by λ λ i ( i (wkn hyp))⊃ ⊃



  

NBE for Λ→

The goal is to bring lambda terms into the following (eta-long beta-normal) 
form, mutually defined by normal and neutral terms:

mutual
  data _ ʳ_⊢  : List Formula → Formula → Set where
    i⊃  : ∀ {  A BΓ } → (A ∷ Γ) ʳ⊢  B →  Γ ʳ⊢  (A ⊃ B)
    e2r : ∀ {  AΓ } →  Γ ᵉ⊢  A →  Γ ʳ⊢  A
  data _ ᵉ_⊢  : List Formula → Formula → Set where
    e⊃  : ∀ {  A BΓ } →  Γ ⊢ᵉ (A ⊃ B) →  Γ ʳ⊢  A →  Γ ᵉ⊢  B
    hyp : ∀ {  AΓ } → (A ∷ Γ) ᵉ⊢  A
    wkn : ∀ {  A BΓ } →  Γ ᵉ⊢  A → (B ∷ Γ) ᵉ⊢  A

Example. At type ( → )→( → ) the term x. x (τ τ τ τ λ i hyp⊃ ) is not in normal form, 
but x. y. x y (λ λ i ( i (e2r ( e (wkn hyp) hyp)))⊃ ⊃ ⊃ ) is.

Note. The constructor e2r is an explicit conversion from a neutral to normal 
term.



  

NBE for Λ→

soundness : ∀ {  AΓ } 
→  Γ ⊢ A → {w : K} → w ⊩  Γ
→ w ⊩ A

mutual
reify : ∀ {A Γ} 

→  Γ ⊩ A →  Γ ⊢ʳ A
reflect : ∀ {A Γ} 

→  Γ ⊢e A →  Γ ⊩ A

The method is to write an evaluator and an inverse to the evaluator and 
then compose them:

nbe : ∀ {  AΓ } →  Γ ⊢ A →  Γ ʳ⊢  A
nbe {Γ} p = reify (soundness p (reflect-context Γ))



  

NBE for Λ→

● The technique will be the same for all extension of NBE beyond Λ→ 

● The only thing that will change is the forcing relation ⊩ that defines the 
semantics target of the evaluator

● For Λ→, forcing is defined as

_⊩_ : K → Formula → Set
w ⊩ (A ⊃ B) = {w' : K} → w' ≥ w → w' ⊩ A → w' ⊩ B
w ⊩ ($ P) = w ⊩ᵃ P

which is the clause for forcing of implication in Kripke models



  

NBE for Λ→  in Agda

● We now turn to live proving 
● Agda keystroke memento:

– Ctrl+C+L to load a file
– Ctrl+C+R to refine a proof hole
– Ctrl+C+T to show type of proof hole
– Ctrl+C+N to normalize a term within a hole
– Ctrl+C+D to show type of a term written within a hole
– Ctrl+C+E to show typing environment in a hole
– Ctrl+C+X+D to disable hole focus



  

NBE for Λ→  in Continuation Passing Style

● We make the forcing relation a continuation monad:

mutual
 _⊩ˢ_ : K → Formula → Set
 w ⊩ˢ ($ P) = w ⊩ᵃ $ P
 w ⊩ˢ (A ⊃ B) = {w' : K} → w' ≥ w → w' ⊩ A → w' ⊩ B

 _⊩_ : K → Formula → Set
 w ⊩ A = (C : Formula) → ∀ {w₁} → w₁ ≥ w 
          → (∀ {w₂} → w₂ ≥ w₁ → w₂ ⊩ˢ A → w₂ ⊩ᵃ C) 
          → w₁ ⊩ᵃ C



  

NBE for Λ→  in Continuation Passing Style

● Monadic operations help to structure proofs:
● return : ∀ {A w} → w ⊩ˢ A → w ⊩ A
● bind : ∀ {A B w} → w ⊩ A
 → (∀ {w'} → w' ≥ w → w' ⊩ˢ A → w' ⊩ B)
 → w ⊩ B

● run : ∀ {w} → w ⊩ ($ P) → w ⊩ˢ ($ P)



  

Exercise 1 – Adding sums and products
● The target language of normal forms:
mutual

  data _ ʳ_⊢  : List Formula → Formula → Set where
    i⊃  : ∀ {  A BΓ } → (A ∷ Γ) ʳ⊢  B →  Γ ʳ⊢  (A ⊃ B)
    i1∨  : ∀ {  A BΓ } →  Γ ʳ⊢  A →  Γ ʳ⊢  (A ∨ B)
    i2∨  : ∀ {  A BΓ } →  Γ ʳ⊢  B →  Γ ʳ⊢  (A ∨ B)
    e2r : ∀ {  AΓ } →  Γ ᵉ⊢  A →  Γ ʳ⊢  A
    i∧  : ∀ {  A BΓ } →  Γ ʳ⊢  A →  Γ ʳ⊢  B →  Γ ʳ⊢  (A ∧ B)

  data _ ᵉ_⊢  : List Formula → Formula → Set where
    hyp : ∀ {  AΓ } → (A ∷ Γ) ᵉ⊢  A
    e⊃  : ∀ {  A BΓ } →  Γ ᵉ⊢  (A ⊃ B) →  Γ ʳ⊢  A →  Γ ᵉ⊢  B
    e∨  : ∀ {  A B CΓ } →  Γ ᵉ⊢  (A ∨ B) → (A ∷ Γ) ʳ⊢  C → (B ∷ 
Γ) ʳ ⊢ C →  Γ ᵉ⊢  C
    wkn : ∀ {  A BΓ } →  Γ ʳ⊢  A → (B ∷ Γ) ᵉ⊢  A
    e1∧  : ∀ {  A BΓ } →  Γ ᵉ⊢  (A ∧ B) →  Γ ᵉ⊢  A
    e2∧  : ∀ {  A BΓ } →  Γ ᵉ⊢  (A ∧ B) →  Γ ᵉ⊢  B



  

Exercise 1 – Adding sums and products

● We modify the forcing relation by inserting double negation translation and A-
translation:

mutual
 _⊩ˢ_ : K → Formula → Set
 w ⊩ˢ ($ P) = w ⊩ᵃ $ P
 w ⊩ˢ (A ⊃ B) = {w' : K} → w' ≥ w → w' ⊩ A → w' ⊩ B
 w ⊩ˢ (A ∨ B) = w ⊩ A ⊎ w ⊩ B
 w ⊩ˢ (A ∧ B) = w ⊩ A × w ⊩ B

 _⊩_ : K → Formula → Set
 w ⊩ A = (C : Formula) → ∀ {w₁} → w₁ ≥ w 
          → (∀ {w₂} → w₂ ≥ w₁ → w₂ ⊩ˢ A → w₂ ⊩ᵃ C) 
          → w₁ ⊩ᵃ C



  

Exercise 1 – Adding sums and products

● The call-by-value variant of forcing:

mutual
 _⊩ˢ_ : K → Formula → Set
 w ⊩ˢ ($ P) = w ⊩ᵃ $ P
 w ⊩ˢ (A ⊃ B) = {w' : K} → w' ≥ w → w' ⊩ˢ A → w' ⊩ B
 w ⊩ˢ (A ∨ B) = w ⊩ˢ A ⊎ w ⊩ˢ B
 w ⊩ˢ (A ∧ B) = w ⊩ˢ A × w ⊩ˢ B

 _⊩_ : K → Formula → Set
 w ⊩ A = (C : Formula) → ∀ {w₁} → w₁ ≥ w 
          → (∀ {w₂} → w₂ ≥ w₁ → w₂ ⊩ˢ A → w₂ ⊩ᵃ C) 
          → w₁ ⊩ᵃ C



  

Exercise 1

● You are given the complete NBE proof in CPS for Λ→+× i.e. simply 
typed lambda calculus extended with product and sum types;

● This proof uses the call-by-name continuation monad;
● Finish the missing goals of Exercise1.agda in order to prove the 

same result, but this time using the call-by-value continuation 
monad;

● Try to use monadic operators (return, bind) as much as possible;
● To check if your implementation is right, normalize the test 

cases at the end of the file, and compare with the expected 
output.



  

Exercise 2 – Adding Primitive Recursion

● Target language:
mutual
  data _ ʳ_⊢  : K → Formula → Set where
    ⋯
    zero : ∀ {Γ} →  Γ ʳ⊢  ℕ
    succ : ∀ {Γ} →  Γ ʳ⊢  ℕ →  Γ ʳ⊢  ℕ
  data _ ᵉ_⊢  : K → Formula → Set where
    ⋯
    rec : ∀ {  CΓ } →  Γ ᵉ⊢  ℕ →  Γ ʳ⊢  C 
      →  Γ ʳ⊢  (ℕ ⊃ (C ⊃ C)) →  Γ ᵉ⊢  C



  

Exercise 2 – Adding Primitive Recursion

● Major difference: evaluation is no longer into an arbitrary 
Kripke model, but must use the universal model

● Because evaluation of recursion presupposes reify/reflect pair 
is already defined!!

● Forcing relation stays the same, but we are no longer abstract, 
ex. we put:

w ˢ  = w ʳ ⊩ ℕ ⊢ ℕ



  

Exercise 2

● You are given the file Exercise2.agda containing an 
incomplete proof of NBE for simply typed lambda calculus 
with sums, products, and higher type primitive recursion;

● Complete the missing goals, and check how your proof 
computes the test cases.



  

Exercise 3 – Adding Control Delimited at ℕ

● We need to know if a term is annotated or not:

data AnnotAnnot : Set where
  ₋ : Annot
  ₊ : Annot

data _ _⊢ !_!_ : K → Formula → AnnotAnnot → Set where
 ⋯

mutual
  data _ ʳ_⊢ !_!_ : K → Formula → AnnotAnnot → Set where
   ⋯
  data _ ᵉ_⊢ !_!_ : K → Formula → AnnotAnnot → Set where
   ⋯



  

Exercise 3 – Adding Control Delimited at ℕ

● Target language:

mutual
  data _ ʳ_!_⊢  : K → Formula → Annot → Set where
    ⋯
  data _ ᵉ_!_⊢  : K → Formula → Annot → Set where
    ⋯
    reset : ∀ {Γ} →  Γ ᵉ⊢  ℕ ! ₊ →  Γ ᵉ⊢  ℕ ! ₋
    shift : ∀ {  AΓ } → (A ⊃ ℕ ∷ Γ) ᵉ⊢  ℕ ! ₊ →  Γ ᵉ⊢  A ! ₊



  

Exercise 3 – Adding Control Delimited at ℕ

● Strong forcing of implication accounts for annotations a:

w ⊩ˢ (A ⊃ B) ! a = 
  {w' : K} → w' ≥ w 
→ {a' : Annot} → a' ≳ a 
→ w' ⊩ˢ A ! a' → w' ⊩ B ! a'

● And so does the answer type of the monad:

_ -ʳ_!_⊢  : K → Formula → Annot → Set
w -ʳ⊢  C ! ₋ = w ʳ⊢  C ! ₋
w -ʳ⊢  C ! ₊ = w ʳ⊢  ℕ ! ₊



  

Exercise 3

● You are given the file Exercise3.agda containing an 
incomplete proof of NBE for simply typed lambda calculus 
with sums, products, and higher type primitive recursion;

● Complete the missing goals, and check how your proof 
computes the test cases.



  

Solutions to Exercises

Will be posted on

www.lix.polytechnique.fr/~danko/PPDP-2014-tutorial/ 

(on Thursday morning)

http://www.lix.polytechnique.fr/~danko/PPDP-2014-tutorial/

