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Double-negation translations map formulas to formulas in such a way that if a formula is a classical
theorem then its translation is an intuitionistic theorem. We shall go beyond just examining provability
by looking at correspondences between inference rules in classical proofs and in intuitionistic proofs
of translated formulas. In order to make this comparison interesting and precise, we will examine
focused versions of proofs in classical and intuitionistic logics using the LKF and LJF proof systems.
We shall show that for a number of known double-negation translations, one can get essentially
identical (focused) intuitionistic proofs as (focused) classical proofs. Thus the choice of a common
double-negation translation is really the same choice as a polarization of classical logic (of which
there are many).

1 Introduction

Applying a double-negation (DN) translation allows to transform any classical proof of a formula A into
an intuitionistic proof of the translation of A. The proof transformation itself is, however, usually not well
studied – what researchers usually care about in Logic is the existence of this transformation rather than
its description.

The approach of the Programming Languages community is more systematic and more focused on
the structure of proofs. There, continuation-passing style (CPS) translations of both types (formulas) and
terms (proofs) are studied, and these studies show that the transformation of terms (proofs) is sophisticated.
Since the correspondence between DN and CPS is immediate—namely, the call-by-name CPS translation
is exactly Kolmogorov’s DN translation, while the call-by-value CPS translation is almost the same
as Kuroda’s DN translation—it follows that DN translations as proof transformations are necessarily
complicated.

In this paper, we show that the complexity of the DN translation can be tamed if, before the embedding
into intuitionistic logic, we first assign a polarization of formulas. More precisely, in Section 4 we show
that each of the four well known DN translations of Kolmogorov, Gödel-Gentzen, Kuroda, and Krivine,
is factored through a classical polarization together with a “hosting function” that allows a polarized
intuitionistic proof system to operate as if it was a polarized classical proof system: in Section 3, this
hosting function, independent of a particular polarization, is shown to embed classical sequents into
intuitionistic ones yielding structurally almost identical proof trees. In Section 4, we show how the method
of generating double negation translations from polarization maps can account for known and new formula
transformations.

In order to make this analysis of DN-as-polarization possible and precise, we first need to introduce
the focused proofs systems for classical and intuitionistic predicate logics, LKF and LJF [8].
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2 Two focused proof systems

2.1 Polarized formulas

We shall assume the usual notion of first-order term. Atomic formulas are structures that result from
applying an n-ary (n≥ 0) predicate to a list of n first-order terms. First-order classical and intuitionistic
logics are based on the logical connectives t, f , ∨, ∧, and ⊃, and the two quantifiers ∀ and ∃.

When picking a sequent calculus, we have some standard choices to make. For example, sequents can
be either one or two-sided (we use one-sided here). There are also some differences in how introduction
rules for connectives should be given. For example, disjunction introduction can be written as either

` Γ,B1,B2

` Γ,B1∨B2
or

` Γ,Bi

` Γ,B1∨B2
i ∈ {1,2}.

Given the presence of the contraction and weakening rules, these inference rules are inter-admissible.
Since we are interested in having a rich collection of proof structures, we will allow both of these inference
rules and will distinguish between them by having the first one (which is invertible) introduce the polarized
logical connective ∨− and the second one (which is non-invertible) introduce ∨+. Similarly, we introduce
∧− and ∧+ as the de Morgan duals of ∨+ and ∨−, respectively. (The logical constants t and f can also be
polarized but we ignore these since they play no role in this paper.) Given this motivation, we introduce
polarized formulas as expressions built from atomic formulas and negated atomic formulas using the
connectives ∨−, ∨+, ∧−, ∧+, and the two quantifiers ∀ and ∃ as constructors also of polarized formulas.

Polarized formulas are either positive or negative as follows. An atomic formula can be given a
polarization in an arbitrary fashion: when we speak about polarized formulas, we will need to specify how
atoms are polarized. Generally, we will treat them all the same (e.g.,, all atomic formulas are positive)
but it is possible to have some be positive and some negative. A formula is negative if it is a negative
atom, or the negation of a positive atom, or its top-level connective is one of the following: ∨−, ∧−, ⊃,
∀. Dually, a formula is positive if it is a positive atom or the negation of a negative atom or its top-level
connective is one of the following: ∨+, ∧+, ∃. We shall say that the unpolarized connectives ∨ and ∧ are
ambiguous since there is more than one version of these connectives as polarized formulas: notice that the
implication and the first-order quantifiers are not ambiguous. Finally, we shall need a polarized formula to
denote the minimal logic false: we write this as q and it is always treated as a negative atomic formula.
Minimal logic negation ¬qB is defined to be the implication B⊃ q.

We will also allow positive and negative delays, ∂−(·) and ∂+(·), into polarized formulas. The idea
is that ∂−(B) is always negative and ∂+(B) is always positive no matter what the polarity of B is. These
delay operators are easily defined using polarized logical connectives: we can take the official definitions
to be ∂−(B) = ∀x.B and ∂+(B) = ∃x.B (provided that x is not free in B). Alternatively, they can be defined
to be the 1-ary version of the binary ∧− and ∧+ connectives, respectively.

Let B be an unpolarized first-order formula. Let B̂ be a polarized formula that results from (i) adding
either a + or a − to every occurrence of ∧ and ∨ in B, (ii) picking some polarization of atomic formulas,
and (iii) inserting any number of delays anywhere into the formula. There are, of course, a great many
ways that a given formula B can be polarized since following (i) alone leads to an exponential number of
such polarizations: if B has n occurrences of ∨ and ∧ then there are 2n ways to annotate them with + or
−.
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ASYNCHRONOUS INTRODUCTION RULES

` Γ⇑B1,Θ ` Γ⇑B2,Θ

` Γ⇑B1 ∧− B2,Θ

` Γ⇑B1,B2,Θ

` Γ⇑B1 ∨− B2,Θ

` Γ⇑ [y/x]B,Θ
` Γ⇑∀x.B,Θ

SYNCHRONOUS INTRODUCTION RULES

` Γ⇓B1 ` Γ⇓B2

` Γ⇓B1 ∧+ B2

` Γ⇓Bi

` Γ⇓B1 ∨+ B2
i ∈ {1,2} ` Γ⇓ [t/x]B

` Γ⇓∃x.B

IDENTITY RULES
P atomic
` P⊥,Γ⇓P

init ` Γ⇑B ` Γ⇑B⊥

` Γ⇑ · cut

STRUCTURAL RULES

` Γ,C⇑Θ

` Γ⇑C,Θ
store

` Γ⇑N
` Γ⇓N release

` P,Γ⇓P
` P,Γ⇑ · decide

Here, Γ ranges over multisets of polarized formulas; Θ ranges over lists of polarized formulas; P denotes
a positive formula; N denotes a negative formula; C denotes either a positive formula or a negative atom;
and B denotes an unrestricted polarized formula. B⊥ denotes the negation normal form of the negation
of B. The right introduction rule for ∀ has the the usual eigenvariable restriction that y is not free in any
formula in the conclusion sequent.

Figure 1: The LKF focused classic calculus

2.2 Focused classical logic

The LKF proof system (see Figure 1) involves polarized formulas that do not contain ⊃ and q: these are
the classical polarized formulas, also called LKF-formulas. There are two kinds of sequents in this proof
system, namely, ` Γ⇑Θ and ` Γ⇓B, where Γ is a multiset of atomic or positively polarized formulas,
B is a polarized formula, and Θ is a list of polarized formulas. The list structure of Θ can be replaced
by a multiset but we maintain it as a list. The formula occurrence B in the ⇓ sequent is called the focus
of that sequent. Notice that contraction, through the decide rule, is only done on positive formulas. The
completeness of LKF is proved in [8] and can be stated as follows: If B is an (unpolarized) classical logic
theorem and B̂ is any polarization of B, then ` ·⇑ B̂ is provable in LKF. Thus, the choice of polarization
does not affect provability but it can have a big impact on the structure of proofs.

2.3 Focused intuitionistic logic

The LJF proof system (see Figure 2) involves polarized formulas without occurrences of ∨− and f−: these
are the intuitionistic polarized formulas, also called LJF-formulas. There are two kinds of sequents in this
proof system. One kind contains a single ⇓ on either the right or the left of the turnstyle (`) and are of the
form Γ ⇓ B ` E or Γ ` B ⇓: in both of these cases, the formula B is the focus of the sequent. The other
kind of sequent has an occurrence of ⇑ on each side of the turnstyle, eg., Γ⇑Θ ` ∆1 ⇑∆2, and is such that
the union of the two multisets ∆1 and ∆2 contains exactly one formula: that is, one of these multisets is
empty and the other is a singleton. When writing asynchronous rules that introduce a connective on the
left-hand side, we use R to denote ∆1 ⇓ ∆2.
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ASYNCHRONOUS INTRODUCTION RULES

Γ⇑B1 ` B2 ⇑
Γ⇑ · ` B1 ⊃ B2 ⇑

Γ⇑ · ` B1 ⇑ Γ⇑ · ` B2 ⇑
Γ⇑ · ` B1 ∧− B2 ⇑

Γ⇑ · ` [y/x]B⇑
Γ⇑ · ` ∀x.B⇑

Γ⇑ [y/x]B,Θ `R

Γ⇑∃x.B,Θ `R

Γ⇑B1,B2,Θ `R

Γ⇑B1 ∧+ B2,Θ `R

Γ⇑B1,Θ `R Γ⇑B2,Θ `R

Γ⇑B1 ∨+ B2,Θ `R

SYNCHRONOUS INTRODUCTION RULES

Γ ` B1 ⇓ Γ ⇓ B2 ` E
Γ ⇓ B1 ⊃ B2 ` E

Γ ⇓ [t/x]B ` E
Γ ⇓ ∀x.B ` E

Γ ⇓ Bi ` E
Γ ⇓ B1∧− B2 ` E

i ∈ {1,2}

Γ ` Bi ⇓
Γ ` B1 ∨+ B2 ⇓

Γ ` B1 ⇓ Γ ` B2 ⇓
Γ ` B1∧+ B2 ⇓

Γ ` [t/x]B ⇓
Γ ` ∃x.B ⇓

IDENTITY RULES

N atomic
Γ ⇓ N ` N

Il
P atomic

Γ,P ` P ⇓ Ir
Γ⇑ · ` B⇑ · Γ⇑B ` ·⇑E

Γ⇑ · ` ·⇑E Cut

STRUCTURAL RULES

Γ,N ⇓ N ` E
Γ,N ⇑ · ` ·⇑E

Dl
Γ ` P ⇓

Γ⇑ · ` ·⇑P
Dr

Γ⇑P ` ·⇑E
Γ ⇓ P ` E

Rl
Γ⇑ · ` N ⇑ ·

Γ ` N ⇓ Rr

C,Γ⇑Θ `R

Γ⇑C,Θ `R
Sl

Γ⇑ · ` ·⇑E
Γ⇑ · ` E ⇑ · Sr

Here, Γ ranges over multisets of polarized formulas; Θ ranges over lists of polarized formulas; P denotes
a positive formula; N denotes a negative formula; C denotes either a negative formula or a positive atom;
and E denotes either a positive formula or a negative atom; and B denotes an unrestricted polarized
formula. The introduction rule for ∀ has the usual eigenvariable restriction that y is not free in any formula
in the conclusion sequent.

Figure 2: The LJF focused intuitionistic sequent calculus

Note that in the asynchronous phase, a right introduction rule is applied only when the left asyn-
chronous zone Θ is empty. Similarly, a left-introduction rule in the asynchronous phase introduces the
connective at the top-level of the first formula in that context. The scheduling of introduction rules during
this phase can be assigned arbitrarily and the zone Θ can be interpreted as a multiset instead of a list.

Note also that Γ always contains only atomic or negative formulas, and that the contraction, through
the decide-left rule, is only done on negative formulas.

3 Hosting LKF within LJF

It is well-known that intuitionistic inference rules are more expressive than classical inference rules. One
way to show this explicitly is by using an explicit mechanism for hosting any LKF proof within LJF. The
following function, taken from [2], enables this kind of hosting since it maps between phases in LKF and
phases in LJF (of translated formulas).
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Definition 1 (Hosting function (J·K+,J·K−)).

Ja+K+ = a Ja−K− = a

JA ∨+ BK+ = JAK+∨ JBK+ JA ∨− BK− = JAK− ∧+ JBK−

JA ∧+ BK+ = JAK+ ∧+ JBK+ JA ∧− BK− = JAK−∨ JBK+

J∃xAK+ = ∃xJAK+ J∀xAK− = ∃xJAK−

J∂
+(A)K+ = JAK+ J∂

−(A)K− = JAK−

JNK+ = ¬qJNK− JPK− = ¬qJPK+,

where N stands for a negative and P for a positive formula.

When we use this hosting function (as we do for the rest of this paper), we assume that atoms in LJF
formulas will be polarized positively: the only exception to this is (as mentioned before) the assumption
that q is polarized negatively. We also note that since LJF contains only positive disjunctions, any
occurrence of ∨ in a polarized intuitionistic formula should be understood as being ∨+.

Theorem 1. There is a rule-preserving map of LKF proofs into LJF proofs: that is, for a fixed (negatively
polarized) atom q, the following two statements hold:

`LKF Γ⇑Θ
φ−→ JΓK− ⇑ JΘK− `LJF q⇑

`LKF Γ⇓B
ψ−→ JΓK− `LJF JBK+ ⇓

where the transformations φ ,ψ are structure-preserving.

Proof. The two statements are proved simultaneously and by induction on the derivation. All but the
structural rules of release and decide of LKF are mapped to a single proof rule of LJF: ∧− is mapped
to ∨+-left, ∨− is mapped to ∧+-left, ∀ is mapped to ∃-left, ∧+ is mapped to ∧+-right, ∨+ is mapped
to ∨+-right, ∃ is mapped to ∃-right, init is mapped to init-right, store is mapped to store-left. The case
for release, which is mapped to a release-right followed by a ⊃-right, and the case of decide, which is
mapped to a decide-left, followed by a ⊃-left, of which one premise ends immediately with an init-left on
q, is given as follows. Note that because N is negative (reason for the release) JNK+ = ¬qJNK−. Similarly,
because P is positive (reason for the decide), JPK− = ¬qJPK+

` Γ⇑N
` Γ⇓N release −→

Γ⇑ JNK− ` q⇑ ·
Γ⇑ · ` JNK+ ⇑ ·

⊃r

Γ ` JNK+ ⇓
Rr

` P,Γ⇓P
` P,Γ⇑ · decide −→

Γ ` JPK+ ⇓ Γ ⇓ q ` q
initl

Γ,JPK− ⇓ JPK− ` E
⊃l

Γ,JPK− ⇑ · ` ·⇑q
Dl

This embedding is not limited to cut-free LKF proofs. Indeed, an LKF cut is also mapped to an LJF
cut. The LKF cut, seen in figure 1 yields two asynchronous premises, one on a positive formula, one on
a negative formula. Take B to be the positive formula, then B⊥ is necessarily a negative formula (the
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de Morgan dual). The first premise will immediately go into a store, the second premise engages in an
asynchronous phase. The LJF cut follows the same structure :

` Γ⇑B⊥
` Γ,B⇑ ·
` Γ⇑B

` Γ⇑ · cut
−→

Γ⇑ JBK+ ` q⇑ ·
Γ⇑ · ` JBK− ⇑ ·

⊃r
Γ,JBK− ⇑ · ` ·⇑q
Γ⇑ JBK− ` ·⇑q

Γ⇑ · ` ·⇑q Cut

The proof follows from this lemma:

Lemma 1. For any LKF formula B, JB⊥K+ = JBK− and JB⊥K− = JBK+

Proof. By induction on the structure of B.

Remark 1. Because the output of the hosting embedding is always positive (except for the ⊃) the rules
for the negative connectives (∀-left, ∀-right, ∧−-left, and ∧−-right) are not used, thus not treated in the
proof. Similarly, the only formula stored on the right is q, a negative atom on which decide-right is never
used. Release-left does not appear either because the only formulas under focus on the left are of the
form F ⊃ q, which yield, in one premise a left-focus on a negative atom (the proof ends immediately with
init-left on q) and a right-focus on F .

We now proceed to the decomposition of well known double-negation translations in terms of a
polarity assignment and the hosting function on formulas.

4 Double-negation translations as polarity assignments

We will treat the double-negation translations of Kolmogorov, Gdel-Gentzen, Kuroda, and Krivine,
reusing the notation from the recent paper relating these translation by Oliva and Ferreira [6]; for a classic
reference see [11]. The notation ¬qB stands for the intuitionistic formula B⊃ q, which is a way to write
minimal logic negation.

We start with Krivine’s translation (−)Kr and the corresponding polarization (−)
Kr

:

aKr = ¬qa aKr = a+

a⊥Kr = a a⊥Kr = a−

(A∧B)Kr = AKr∨BKr A∧BKr = AKr ∧− BKr

(A∨B)Kr = AKr ∧+ BKr A∨BKr = AKr ∨− BKr

(∀xA)Kr = ∃xAKr ∀xAKr = ∀xAKr

(∃xA)Kr = ¬q∃x¬qAKr ∃xAKr = ∃x∂
−(AKr),

where (−)Kr = ¬q(−)Kr. By induction on A it is easy to see that

AKr = JAKrK
− and, hence, AKr = ¬qJAKrK

−. (1)

A polarity assignment of classical formulas, thus, generates the double-negation translation.
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Next, we express the Kolmogorov translation (−)Ko as a polarity assignment map for classical
formulas (−)

Ko
:

aKo = ¬q¬qa aKo = ∂
−(a+)

a⊥Ko = ¬qa a⊥Ko = a−

(A∧B)Ko = (¬q¬qAKo) ∧+ (¬q¬qBKo) A∧BKo = (∂−(∂+(AKo))) ∧+ (∂−(∂+(BKo)))

(A∨B)Ko = (¬q¬qAKo)∨ (¬q¬qBKo) A∨BKo = (∂−(∂+(AKo))) ∨+ (∂−(∂+(BKo)))

∀xAKo = ¬q∃x¬qAKo ∀xAKo = ∀x∂
+(AKo)

∃xAKo = ∃x¬q¬qAKo ∃xAKo = ∃x∂
−(∂+(AKo)),

where (−)Ko = ¬q¬q(−)Ko. Again, by simple induction on A we can show that

AKo = JAKoK
+ and, hence, AKo = ¬q¬qJAKoK

+. (2)

Note, however, that instead of ∀x¬q¬qAKo we are defining (∀xA)Ko by ¬q∃x¬qAKo. We use the minimal
logic equivalence ¬q∃xA∼= ∀x¬qA, which is also an isomorphism within focused proofs in the sense that
using these formulas causes minor differences within phases but causes no differences at phase boundaries.
We also needed to use a number of delays, ∂+(·) and ∂−(·), to exactly capture Kolmogorov translation,
because, as it is well known, this translation is not optimal in the number of negations it uses.

We continue with the polarization (−)
Ku

of Kuroda’s double-negation translation (−)Ku:

aKu = a aKu = a+

a⊥Ku = ¬qa a⊥Ku = a−

(A∧B)Ku = AKu ∧+ BKu A∧BKu = AKu ∧+ BKu

(A∨B)Ku = AKu∨BKu A∨BKu = AKu∨BKu

∀xAKu = ¬q∃x¬qAKu ∀xAKu = ∀x∂
+(AKu)

∃xAKu = ∃xAKu ∃xAKu = ∃xAKu,

where (−)Ku = ¬q¬q(−)Ku and we again prefer ¬q∃x¬qAKu over ∀x¬q¬qAKu in the translation of ∀.
Similar to the previous translations, by induction on A one can easily show that

AKu = JAKuK
+ and, hence, AKu = ¬q¬qJAKuK

+. (3)

Finally, we consider the Gdel-Gentzen translation (−)GG,

aGG = ¬q¬qa

(a⊥)
GG

= ¬qa

(A∧B)GG = AGG ∧− BGG

(A∨B)GG = ¬q¬q(AGG∨BGG)

(∀xA)GG = ∀xAGG

(∃xA)GG = ¬q¬q∃xAGG.
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Its polarization is given by:

aGG = ∂
−(a+) aGG2

= ∂
+(a−)

a⊥GG = a− a⊥GG2
= a+

A∧BGG = AGG ∧− BGG A∧BGG2
= AGG2

∧− BGG2

A∨BGG = ∂
−(AGG ∨+ BGG) A∨BGG2

= AGG ∨+ BGG

∀xAGG = ∀xAGG2
∀xAGG2

= ∀xAGG2

∃xAGG = ∂
−(∃xAGG) ∃xAGG2

= ∃xAGG.

Now, if we write subformulas of the form ∀x1∀x2 · · ·∀xn¬qA as the isomorphic ¬q∃x1∃x2 · · ·∃xnA, and all
¬qA ∧− ¬qB as ¬q(A∨B) we can get the following decomposition of the Gdel-Gentzen translation:

AGG = JAGGK+. (4)

We thus have the following theorem.

Theorem 2. The hosting function for formulas J·K+,J·K− factorizes the four double-negation translations
through their polarization maps, that is, for any (non-polarized) first-order formula A we have that:

AKo = ¬q¬qJAKoK
+ AKr = ¬qJAKrK

− AKu = ¬q¬qJAKuK
+ AGG = JAGGK+.

Combining Theorem 1 and Theorem 2, we can see that polarized proofs are hosted in a structure-
preserving way as follows.

Corollary 1. There is a structure preserving embedding of an LKF proof of A into an LJF proof of the
DN-translation of A, or, more precisely, structure preserving maps of the following kind:

`LKF Γ⇑AKr −→ JΓK− ⇑ `LJF AKr ⇑
`LKF Γ⇑AKo −→ JΓK− ⇑ `LJF AKo ⇑
`LKF Γ⇑AKu −→ JΓK− ⇑ `LJF AKu ⇑
`LKF Γ⇑AGG −→ JΓK− ⇑ `LJF AGG ⇑ .

Proof. After a ⊃-right rule applied, the following instances of Theorem 1 are used:

`LKF Γ⇑AKr −→ JΓK− ⇑ JAKrK
− `LJF q⇑

`LKF Γ⇑AKo −→ JΓK− ⇑ J∂
+(AKo)K

− `LJF q⇑
`LKF Γ⇑AKu −→ JΓK− ⇑ J∂

+(AKu)K
− `LJF q⇑ .

To see why the last proof-hosting statement is true, observe that JAGGK+ is always a formula of the form
¬qJBK− for some polarized formula B.

We can thus see that the hosting function J·K+,J·K− actually allows to define a large class of double-
negation translations. Namely, given any polarization of a formula, the hosting translation of the polariza-
tion determines a valid intuitionistic translation of a classical theorem, and moreover such that proofs are
hosted in a structure-preserving way. We present two such examples of DN translations obtained in this
way.
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5 Examples of polarization and corresponding translations

In previous sections, for each of four known double-negation translations, a polarization of classical
formulas was given that yielded structurally equivalent focused proofs in the two systems LKF and LJF.
In this section, we take the opposite approach by, first, polarizing a classical formula and, second, giving
the corresponding double-negation translation.

Because the starting point was the double-negation translations, and not the classical formula, these
polarizations included delays to force the break of focusing corresponding to (sometimes redundant)
negations. It is, however, possible to polarize a classical formula without delays, and a corresponding
double-negation translation can be given through the hosting embedding given in Definition 1. There
is an exponential number of possible polarization of a classical formula bringing up a similar number
of possible double-negation translations. This section gives two example. The first example polarizes
the ambiguous connectives (conjunction and disjunction) negatively and the second one polarizes those
ambiguous connectives positively. The resulting translations resemble Krivine’s and Kuroda’s translations,
respectively, but treats a sequence of quantifiers as a whole, introducing negations only when needed.

5.1 CNF Double-negation translation

Let the polarization (·)
cnf

be given by

Acnf = A B∧Ccnf = Bcnf ∧− Ccnf B∨Ccnf = Bcnf ∨− Ccnf

A⊥cnf = A⊥ ∀x.Ccnf = ∀x.Ccnf ∃x.Ccnf = ∃x.Ccnf

(Notice that if B is a propositional formula then the only LKF proofs of Bcnf resemble the construction of
the conjunctive normal form of B.) The double-negation translation induced by this polarization differs
from Krivine’s in the treatment of sequences of existential. Indeed, the hosting embedding shows that a
negation is only needed at phase switches, therefore simply giving a negative polarity when able (i.e. all
but the existential) will result in a modified Krivine’s translation with fewer negations.

In order to define the double-negation translation that corresponds to this polarization, (·)cnf, we
consider the following two functions defined via mutual recursion and let F be a syntactic variable
denoting any classical formula that is not a top-level existential quantifier. Then (B)cnf = ¬q(B)

cnf1 is
defined as

(∀x.C)cnf1 = ∃x.Ccnf1 Acnf1 = ¬qA A⊥
cnf1

= A

(B∧C)cnf1 = Bcnf1 ∨+ Ccnf1 (B∨C)cnf1 = Bcnf1 ∧+ Ccnf1

(∃x.C)cnf1 = ¬q∃x.(C)cnf2 (∃x.C)cnf2 = ∃x.(C)cnf2 Fcnf2 = ¬qFcnf1

5.2 Minimal Kuroda’s Double-negation translation

Opposite to the previous polarization, connectives are given positive polarities when possible:

Apos = A B∧Cpos = Bpos ∧+ Cpos B∨Cpos = Bpos ∨+ Cpos

A⊥pos = A⊥ ∀x.Cpos = ∀x.Cpos ∃x.Cpos = ∃x.Cpos
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In order to define the double-negation translation that corresponds to this polarization, (·)pos1, we consider
the following two functions defined via mutual recursion: this time, F is a syntactic variable denoting any
classical formula that is not a top-level universal quantifier.

(∀x.C)pos1 = ∀x.(C)pos1 Fpos1 = ¬q¬qFpos2 (B∧C)pos2 = Bpos2 ∧+ Cpos2

(B∨C)pos2 = Bpos2 ∨+ Cpos2 (∀x.C)pos2 = ∀x.Cpos1 Apos2 = A (A⊥)
pos2

= ¬qA

6 Conclusion and future work

We have presented a systematic way for generating old and new double-negation (and CPS) translations.
The decomposition through the hosting function is beneficial not only for the translation of formulas but
even more so for the structure of proofs.

One can also see our method as a way to make the notion of double-negation translation more precise.
Typical requirements for a function (·)∗ to be called a double-negation translation can be taken to be the
following:

• Γ ` A classically, implies Γ∗ ` A∗ intuitionistically,

• and, Γ ` (A↔ A∗) classically.

Gaspar [7] has recently shown that it is possible to have two translations (·)1 and (·)2 satisfy these
conditions although A1 ↔ A2 does not hold intuitionistically. It is not clear at the moment whether
Gaspar’s specially crafted double-negation translations can be represented as polarizations or whether
the class of translations generated by polarizations is resistant to this intuitionistic non-equivalence
phenomenon.

Avigad has shown [1] how classical proofs of A can be embedded in intuitionistic logic as proofs of
the Gödel-Gentzen translation of A efficiently, which is similar to the spirit of our Theorem 1.

In the future, we would like to address the question of whether the hosting function allows preserving
the process of cut-elimination intact. If so, what we obtain might be seen as a restatement of Plotkin’s
Simulation Theorem [9] for CPS translations that would use polarization instead of CPS translation of
formulas, and directly work in the classical sequent calculus instead of making a detour in intuitionistic
logic which has more facilities than needed to analyze CPS translated proofs (Remark 1). It is known that
even advanced forms of CPS translations like the one-pass translation Danvy and Nielsen [5] significantly
modify the structure of source terms during translation, while our hosting function from LKF to LJF is
structure preserving.

Espı́rito Santo, Matthes, Nakazawa, and Pinto [10], also consider a factorization of CPS translations
into a monadic translation and a single instantiation mapping. The mapping has the same role as our
hosting function, as it is sufficient to capture both the call-by-value and the call-by-name CPS translations.
The paper also studies the cut-elimination process under translation for the λ̄ µ µ̃ sequent calculus and
proves a simulation result.

One application of this work involves the design of proof checker for classical and intuitionistic logic.
If one is given a proof checker for intuitionistic logic, is it possible to use it to check classical logic proofs.
At first glance, it would seem that double-negation translations might be useful for translating classical
theorem into intuitionistic theorems: one would then need to find ways for “proof evidence” within a
classical proof to be lifted to the intuitionistic logic setting. The results of this paper suggest that if proof
checking is based on polarized classical and intuitionistic logics [3], then double-negation translations
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are not needed: instead, polarized classical logic formulas can be hosted directly within the polarized
intuitionistic proof checker (this has indeed been demonstrated in the recent paper [4]).
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