REVIEW OF "RATHJEN, MICHAEL: INDEFINITENESS IN SEMI-INTUITIONISTIC SET THEORIES: ON A CONJECTURE OF FEFERMAN"

DANKO ILIK

Classification: 03E50 03F50 03E35 03F25 03C70 03E60.

Keywords: continuum hypothesis; realizability; semi-intuitionistic set theory; forcing.

In semi-intuitionistic set theories, where the law of excluded middle $\phi \lor \neg \phi$ does not hold for all ϕ , one can wonder whether it does hold for ϕ the Continuum Hypothesis (CH). Feferman had conjectured that CH $\lor \neg$ CH does not hold (is not provable) for the set theory $\mathbf{T} := \mathbf{SCS} + \ \mathbb{R}$ is a set", where $\mathbf{SCS} := \mathbf{IKP} + (\Delta_0 - \text{LEM}) + (\text{MP}) + (\text{BOS}) + (\text{AC}_{\text{Set}})$, where \mathbf{IKP} is intuitionistic Kripke-Platek set theory, $\Delta_0 - \text{LEM}$ is the law of excluded middle for Δ_0 -formulas, MP is Markov's Principle, BOS is the Bounded Omniscience Schema, and AC_{Set} is the Axiom of Choice.

Rathjen first proves that Δ_0 -LEM and BOS are redundant in **SCS**, by using Diaconescus well-known argument with AC_{Set}. He then develops a proof of Feferman's conjecture,

$$\mathbf{T} \not\vdash \mathrm{CH} \lor \neg \mathrm{CH},$$

by:

- choosing an appropriate version of relativized constructible hierarchies, L[A];
- defining computability over L[A];
- defining realizability over L[A], with a realizability theorem (Theorem 5.2) showing that from any proof in **T** one can effectively construct a heriditarily finite set as a realizer;
- finally, a set C is constructed that provides a contradiction with L[C]-realizability of CH $\lor \neg$ CH.

The paper ends by remarks on extensions of **T** that still do not prove $CH \lor \neg CH$, as well as showing an analogous result of Projective Determinacy (PD): a proof that **T** \nvDash PD $\lor \neg$ PD.

Date: February 26, 2017.